3.1.49 \(\int \frac {e+f x^2}{\sqrt {a-b x^2} (c+d x^2)^{3/2}} \, dx\) [49]

Optimal. Leaf size=247 \[ \frac {(d e-c f) x \sqrt {a-b x^2}}{c (b c+a d) \sqrt {c+d x^2}}+\frac {\sqrt {a} \sqrt {b} (d e-c f) \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{c d (b c+a d) \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\sqrt {a} f \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x^2}} \]

[Out]

(-c*f+d*e)*x*(-b*x^2+a)^(1/2)/c/(a*d+b*c)/(d*x^2+c)^(1/2)+(-c*f+d*e)*EllipticE(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1
/2))*a^(1/2)*b^(1/2)*(1-b*x^2/a)^(1/2)*(d*x^2+c)^(1/2)/c/d/(a*d+b*c)/(-b*x^2+a)^(1/2)/(1+d*x^2/c)^(1/2)+f*Elli
pticF(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1/2))*a^(1/2)*(1-b*x^2/a)^(1/2)*(1+d*x^2/c)^(1/2)/d/b^(1/2)/(-b*x^2+a)^(1/
2)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {541, 538, 438, 437, 435, 432, 430} \begin {gather*} \frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2} (d e-c f) E\left (\text {ArcSin}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{c d \sqrt {a-b x^2} \sqrt {\frac {d x^2}{c}+1} (a d+b c)}+\frac {\sqrt {a} f \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} F\left (\text {ArcSin}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x^2}}+\frac {x \sqrt {a-b x^2} (d e-c f)}{c \sqrt {c+d x^2} (a d+b c)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e + f*x^2)/(Sqrt[a - b*x^2]*(c + d*x^2)^(3/2)),x]

[Out]

((d*e - c*f)*x*Sqrt[a - b*x^2])/(c*(b*c + a*d)*Sqrt[c + d*x^2]) + (Sqrt[a]*Sqrt[b]*(d*e - c*f)*Sqrt[1 - (b*x^2
)/a]*Sqrt[c + d*x^2]*EllipticE[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/(c*d*(b*c + a*d)*Sqrt[a - b*x^2]*
Sqrt[1 + (d*x^2)/c]) + (Sqrt[a]*f*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[ArcSin[(Sqrt[b]*x)/Sqrt[a]
], -((a*d)/(b*c))])/(Sqrt[b]*d*Sqrt[a - b*x^2]*Sqrt[c + d*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 438

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {e+f x^2}{\sqrt {a-b x^2} \left (c+d x^2\right )^{3/2}} \, dx &=\frac {(d e-c f) x \sqrt {a-b x^2}}{c (b c+a d) \sqrt {c+d x^2}}-\frac {\int \frac {-c (b e+a f)-b (d e-c f) x^2}{\sqrt {a-b x^2} \sqrt {c+d x^2}} \, dx}{c (b c+a d)}\\ &=\frac {(d e-c f) x \sqrt {a-b x^2}}{c (b c+a d) \sqrt {c+d x^2}}+\frac {f \int \frac {1}{\sqrt {a-b x^2} \sqrt {c+d x^2}} \, dx}{d}+\frac {(b (d e-c f)) \int \frac {\sqrt {c+d x^2}}{\sqrt {a-b x^2}} \, dx}{c d (b c+a d)}\\ &=\frac {(d e-c f) x \sqrt {a-b x^2}}{c (b c+a d) \sqrt {c+d x^2}}+\frac {\left (b (d e-c f) \sqrt {1-\frac {b x^2}{a}}\right ) \int \frac {\sqrt {c+d x^2}}{\sqrt {1-\frac {b x^2}{a}}} \, dx}{c d (b c+a d) \sqrt {a-b x^2}}+\frac {\left (f \sqrt {1+\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}} \, dx}{d \sqrt {c+d x^2}}\\ &=\frac {(d e-c f) x \sqrt {a-b x^2}}{c (b c+a d) \sqrt {c+d x^2}}+\frac {\left (b (d e-c f) \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {1+\frac {d x^2}{c}}}{\sqrt {1-\frac {b x^2}{a}}} \, dx}{c d (b c+a d) \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\left (f \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}}} \, dx}{d \sqrt {a-b x^2} \sqrt {c+d x^2}}\\ &=\frac {(d e-c f) x \sqrt {a-b x^2}}{c (b c+a d) \sqrt {c+d x^2}}+\frac {\sqrt {a} \sqrt {b} (d e-c f) \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{c d (b c+a d) \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\sqrt {a} f \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 7.54, size = 220, normalized size = 0.89 \begin {gather*} \frac {\sqrt {-\frac {b}{a}} d (d e-c f) x \left (a-b x^2\right )+i b c (-d e+c f) \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {-\frac {b}{a}} x\right )|-\frac {a d}{b c}\right )-i c (b c+a d) f \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {-\frac {b}{a}} x\right )|-\frac {a d}{b c}\right )}{\sqrt {-\frac {b}{a}} c d (b c+a d) \sqrt {a-b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e + f*x^2)/(Sqrt[a - b*x^2]*(c + d*x^2)^(3/2)),x]

[Out]

(Sqrt[-(b/a)]*d*(d*e - c*f)*x*(a - b*x^2) + I*b*c*(-(d*e) + c*f)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Ellip
ticE[I*ArcSinh[Sqrt[-(b/a)]*x], -((a*d)/(b*c))] - I*c*(b*c + a*d)*f*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*El
lipticF[I*ArcSinh[Sqrt[-(b/a)]*x], -((a*d)/(b*c))])/(Sqrt[-(b/a)]*c*d*(b*c + a*d)*Sqrt[a - b*x^2]*Sqrt[c + d*x
^2])

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 349, normalized size = 1.41

method result size
default \(\frac {\left (\sqrt {\frac {b}{a}}\, b c d f \,x^{3}-\sqrt {\frac {b}{a}}\, b \,d^{2} e \,x^{3}+\sqrt {\frac {-b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right ) a c d f +\sqrt {\frac {-b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right ) b \,c^{2} f -\sqrt {\frac {-b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right ) b \,c^{2} f +\sqrt {\frac {-b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right ) b c d e -\sqrt {\frac {b}{a}}\, a c d f x +\sqrt {\frac {b}{a}}\, a \,d^{2} e x \right ) \sqrt {-b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}{c d \sqrt {\frac {b}{a}}\, \left (a d +b c \right ) \left (-b d \,x^{4}+a d \,x^{2}-c \,x^{2} b +a c \right )}\) \(349\)
elliptic \(\frac {\sqrt {\left (-b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {\left (-b d \,x^{2}+a d \right ) x \left (c f -d e \right )}{d c \left (a d +b c \right ) \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (-b d \,x^{2}+a d \right )}}+\frac {\left (\frac {f}{d}-\frac {c f -d e}{d c}+\frac {a \left (c f -d e \right )}{c \left (a d +b c \right )}\right ) \sqrt {1-\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )}{\sqrt {\frac {b}{a}}\, \sqrt {-b d \,x^{4}+a d \,x^{2}-c \,x^{2} b +a c}}+\frac {\left (c f -d e \right ) b \sqrt {1-\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )-\EllipticE \left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )\right )}{\left (a d +b c \right ) \sqrt {\frac {b}{a}}\, \sqrt {-b d \,x^{4}+a d \,x^{2}-c \,x^{2} b +a c}\, d}\right )}{\sqrt {-b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(376\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^2+e)/(d*x^2+c)^(3/2)/(-b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((b/a)^(1/2)*b*c*d*f*x^3-(b/a)^(1/2)*b*d^2*e*x^3+((-b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(b/a)^(1
/2),(-a*d/b/c)^(1/2))*a*c*d*f+((-b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(b/a)^(1/2),(-a*d/b/c)^(1/2
))*b*c^2*f-((-b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(b/a)^(1/2),(-a*d/b/c)^(1/2))*b*c^2*f+((-b*x^2
+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(b/a)^(1/2),(-a*d/b/c)^(1/2))*b*c*d*e-(b/a)^(1/2)*a*c*d*f*x+(b/a)
^(1/2)*a*d^2*e*x)*(-b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c/d/(b/a)^(1/2)/(a*d+b*c)/(-b*d*x^4+a*d*x^2-b*c*x^2+a*c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)/(d*x^2+c)^(3/2)/(-b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x^2 + e)/(sqrt(-b*x^2 + a)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)/(d*x^2+c)^(3/2)/(-b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e + f x^{2}}{\sqrt {a - b x^{2}} \left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**2+e)/(d*x**2+c)**(3/2)/(-b*x**2+a)**(1/2),x)

[Out]

Integral((e + f*x**2)/(sqrt(a - b*x**2)*(c + d*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)/(d*x^2+c)^(3/2)/(-b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x^2 + e)/(sqrt(-b*x^2 + a)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {f\,x^2+e}{\sqrt {a-b\,x^2}\,{\left (d\,x^2+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e + f*x^2)/((a - b*x^2)^(1/2)*(c + d*x^2)^(3/2)),x)

[Out]

int((e + f*x^2)/((a - b*x^2)^(1/2)*(c + d*x^2)^(3/2)), x)

________________________________________________________________________________________